Machine Learning
In 1959, Arthur Samuel, a computer scientist who pioneered the study of artificial intelligence, described machine learning as “the study that gives computers the ability to learn without being explicitly programmed.”
​
Alan Turing’s seminal paper (Turing, 1950) introduced a benchmark standard for demonstrating machine intelligence, such that a machine has to be intelligent and responsive in a manner that cannot be differentiated from that of a human being.
Machine Learning Categories
​
Machine Learning is generally categorized into three types: Supervised Learning, Unsupervised Learning, Reinforcement learning
​
Supervised Learning:
​
In supervised learning, the machine experiences the examples along with the labels or targets for each example. The labels in the data help the algorithm to correlate the features.
Two of the most common supervised machine learning tasks are classification and regression
​
In classification problems, the machine must learn to predict discrete values. That is, the machine must predict the most probable category, class, or label for new examples. Applications of classification include predicting whether a stock's price will rise or fall, or deciding if a news article belongs to the politics or leisure section.
In regression problems, the machine must predict the value of a continuous response variable. Examples of regression problems include predicting the sales for a new product, or the salary for a job based on its description.
​
Unsupervised Learning:
When we have unclassified and unlabeled data, the system attempts to uncover patterns from the data. There is no label or target given for the examples. One common task is to group similar examples together called clustering.
​
Reinforcement Learning:
Reinforcement learning refers to goal-oriented algorithms, which learn how to attain a complex objective (goal) or maximize along a particular dimension over many steps. This method allows machines and software agents to automatically determine the ideal behavior within a specific context in order to maximize its performance. Simple reward feedback is required for the agent to learn which action is best; this is known as the reinforcement signal. For example, maximize the points won in a game over many moves.
​